[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]

[dinosaur] Early tetrapod bone repair (free pdf) + new modern crocodile species




Ben Creisler
bcreisler@gmail.com


Free pdf:

Eva C. Herbst, Michael Doube, Timothy R. Smithson, Jennifer A. Clack Âand John R. Hutchinson (2019)
Bony lesions in early tetrapods and the evolution of mineralized tissue repair.
Paleobiology (advance online publication)
DOI: https://doi.org/10.1017/pab.2019.31
https://www.cambridge.org/core/journals/paleobiology/article/bony-lesions-in-early-tetrapods-and-the-evolution-of-mineralized-tissue-repair/67C897A5717953340CE5E829D6008184


Bone healing is an important survival mechanism, allowing vertebrates to recover from injury and disease. Here we describe newly recognized paleopathologies in the hindlimbs of the early tetrapods Crassigyrinus scoticus and Eoherpeton watsoni from the early Carboniferous of Cowdenbeath, Scotland. These pathologies are among the oldest known instances of bone healing in tetrapod limb bones in the fossil record (about 325 Ma). X-ray microtomographic imaging of the internal bone structure of these lesions shows that they are characterized by a mass of trabecular bone separated from the shaft's trabeculae by a layer of cortical bone. We frame these paleopathologies in an evolutionary context, including additional data on bone healing and its pathways across extinct and extant sarcopterygians. These data allowed us to synthesize information on cell-mediated repair of bone and other mineralized tissues in all vertebrates, to reconstruct the evolutionary history of skeletal tissue repair mechanisms. We conclude that bone healing is ancestral for sarcopterygians. Furthermore, other mineralized tissues (aspidin and dentine) were also capable of healing and remodeling early in vertebrate evolution, suggesting that these repair mechanisms are synapomorphies of vertebrate mineralized tissues. The evidence for remodeling and healing in all of these tissues appears concurrently, so in addition to healing, these early vertebrates had the capacity to restore structure and strength by remodeling their skeletons. Healing appears to be an inherent property of these mineralized tissues, and its linkage to their remodeling capacity has previously been underappreciated.

====

Not fossil, but may be of interest:

Crocodylus halli, new species

Christopher M. Murray, Peter Russo, Alexander Zorrilla, and Caleb D. McMahan (2019)
Divergent Morphology among Populations of the New Guinea Crocodile, Crocodylus novaeguineae (Schmidt, 1928): Diagnosis of an Independent Lineage and Description of a New Species.
Copeia 107(3): 517-523
doi: https://doi.org/10.1643/CG-19-240
https://www.asihcopeiaonline.org/doi/abs/10.1643/CG-19-240

The freshwater crocodile inhabiting Papua New Guinea, currently recognized as Crocodylus novaeguineae, exhibits morphological, molecular, and ecological divergence between the northern and southern versants of the Central Highlands and occupies separate evolutionary trajectories. A robust body of work has long encouraged the formal description of New Guinea crocodiles from the southern versant of the highlands as a distinct lineage with a taxonomy that reflects diagnosed relationships. Here, we use geometric morphometric techniques to assess cranial shape variation between specimens from both versants and add to the diagnostic evidence supporting a more accurate taxonomy. Further, herein, we formally describe the southern variant as a distinct lineage (Hall's New Guinea Crocodile; Crocodylus halli, new species).

News:

https://phys.org/news/2019-09-species-crocodile-museum.html

Virus-free. www.avg.com